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Abstract: Geometrically non-linear vibrations of doubly curved shallow panels with rectangular platform under
the low-velocity impact by an elastic sphere are investigated. It is assumed that the target is simply supported and
partial differential equations are obtained in terms of its transverse displacement and Airy’s stress function. The
local bearing of the target and impactor’s materials is neglected with respect to the shell deflection in the contact
region. The equations of motion are reduced to a set of infinite nonlinear ordinary differential equations of the
second order in time and with cubic and quadratic nonlinearities in terms of the generalized displacements. The
internal resonance three-to-one induced during the process of impact is investigated by the method of multiple time
scales. The time dependence of the contact force is determined.

Key–Words: Doubly curved shallow panel rectangular in base, Method of multiple time scales, Impact induced
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1 Introduction
Doubly curved panels are widely used in aeronautics,
aerospace and civil engineering and are subjected to
dynamic loads that can cause vibration amplitude of
the order of the shell thickness, giving rise to signifi-
cant non-linear phenomena [1]–[4].

A review of the literature devoted to dynamic be-
haviour of curved panels and shells could be found in
Amabili and Paidoussis [5], as well as in [3], wherein
it has been emphasized that free vibrations of doubly
curved shallow shells were studied in the majority of
papers either utilizing a slightly modified version of
the Donnell’s theory taking into account the double
curvature [1, 6] or the nonlinear first-order theory of
shells [7, 8].

Large-amplitude vibrations of doubly curved
shallow shells with rectangular base, simply sup-
ported at the four edges and subjected to harmonic ex-
citation were investigated in [3], while chaotic vibra-
tions were analyzed in [4]. It has been revealed that
such an important nonlinear phenomenon as the oc-
currence of internal resonances in the problems con-

∗Some of the results had been presented at the 3d International
Conference on Mathematical, Computational and Statistical Sci-
ences (MCSS’15), Dubai, United Arab Emirates, February 22-24,
2015.

sidered in [3] and [4] is of fundamental importance in
the study of curved shells.

In spite of the fact that the impact theory is sub-
stantially developed, there is a limited number of pa-
pers devoted to the problem of impact over geometri-
cally nonlinear shells. Literature review on this sub-
ject could be found in Kistler and Wass [9].

An analysis to predict the transient response of
a thin, curved laminated plate subjected to low ve-
locity transverse impact by a rigid object was carried
out by Ramkumar and Thakar [10], in so doing the
contact force history due to the impact phenomenon
was assumed to be a known input to the analysis.
The coupled governing equations, in terms of the Airy
stress function and shell deformation, are solved using
Fourier series expansions for the variables.

The review of papers dealing with the impact re-
sponse of curved panels and shells shows that a fi-
nite element method and such commercial finite el-
ement software as ABAQUS and its modifications are
the main numerical tools adopted by many researchers
[11]–[26].

Thus, the nonlinear impact response of laminated
composite cylindrical and doubly curved shells was
analyzed using a modified Hertzian contact law in
[11] via a finite element model, which was developed
based on Sander’s shell theory involving shear defor-
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mation effects and nonlinearity due to large deflection.
The nonlinear time dependent equations were solved
using an iterative scheme and Newmark’s method.
Numerical results for the contact force and center de-
flection histories were presented for various impactor
conditions, shell geometry and boundary conditions.

Later large deflection dynamic responses of lam-
inated composite cylindrical shells under impact have
been analyzed in [12] by the geometrically nonlinear
finite element method based on a generalized Sander’s
shell theory with the first order shear deformation and
the von Karman large deflection assumption.

Nonlinear dynamic response for shallow spheri-
cal moderate thick shells with damage under low ve-
locity impact has been studied in [13] by using the or-
thogonal collocation point method and the Newmark
method to discrete the unknown variable function in
space and in time domain, respectively, and the whole
problem is solved by the iterative method. Further this
approach was generalized for investigating dynamic
response of elasto-plastic laminated composite shal-
low spherical shell under low velocity impact [15],
and for functionally graded shallow spherical shell un-
der low velocity impact in thermal environment [16].

The nonlinear transient response of laminated
composite shell panels subjected to low velocity im-
pact in hygrothermal environments was investigated
in [17] using finite element method considering dou-
bly curved thick shells involving large deformations
with Green-Lagrange strains. The analysis was car-
ried out using quadratic eight-noded isoparametric el-
ement. A modified Hertzian contact law was incor-
porated into the finite element program to evaluate
the impact force. The nonlinear equation was solved
using the Newmark average acceleration method in
conjunction with an incremental modified Newton-
Raphson scheme. A parametric study was carried out
to investigate the effects of the curvature and side to
thickness ratios of simply supported composite cylin-
drical and spherical shell panels.

The impact behaviour and the impact-induced
damage in laminated composite cylindrical shell sub-
jected to transverse impact by a foreign object were
studied in [18, 19] using three-dimensional non-
linear transient dynamic finite element formulation.
Non-linear system of equations resulting from non-
linear strain displacement relation and non-linear
contact loading was solved using Newton-Raphson
incremental-iterative method. Some example prob-
lems of graphite/epoxy cylindrical shell panels were
considered with variation of impactor and laminate
parameters and influence of geometrical non-linear ef-
fect on the impact response and the resulting damage
was investigated.

The Sander’s shallow shell theory in conjunction

with the Reissner-Mindlin shear deformation theory
was employed in [20] to develop a finite element anal-
ysis procedure to study the impact response of doubly
curved laminated composite shells, in so doing the
nine-noded quadratic isoparametric elements of La-
grangian family were utilized. Modified Hertzian con-
tact law is used to calculate the contact force. Numer-
ical results were obtained for cylindrical and spherical
shells to investigate the effects of various parameters,
such as radius to span ratio, span to thickness ratio,
boundary condition and stacking sequence on the im-
pact behavior of the target structure [21, 22].

A 4-noded 48 degree-of-freedom doubly curved
quadrilateral shell finite element based on Kirchhoff-
Love shell theory was used in [24] for the nonlinear
finite element analysis to predict the damage of lam-
inated composite cylindrical and spherical shell pan-
els subjected to low velocity impact. The large dis-
placement stiffness matrix was formed using Green’s
strain tensor based on total Lagrangian approach with
further utilization of an iterative scheme for solv-
ing resulting nonlinear algebraic equation by Newton-
Raphson method. The load due to low velocity im-
pact was treated as an equivalent quasi-static load and
Hertzian law of contact was used for finding the peak
contact force.

Recently a new approach has been proposed for
the analysis of the impact interactions of nonlinear
doubly curved shallow shells with rectangular base
under the low-velocity impact by an elastic sphere
[27]. It has been assumed that the shell is simply sup-
ported and partial differential equations have been ob-
tained in terms of shell’s transverse displacement and
Airy’s stress function. The local bearing of the shell
and impactor’s materials has been neglected with re-
spect to the shell deflection in the contact region. The
equations of motion have been reduced to a set of in-
finite nonlinear ordinary differential equations of the
second order in time and with cubic and quadratic
nonlinearities in terms of the generalized displace-
ments. Assuming that only two natural modes of vi-
brations dominate during the process of impact and
applying the method of multiple time scales, the set
of equations has been obtained, which allows one to
find the time dependence of the contact force and to
determine the contact duration and the maximal con-
tact force.

In the present paper, the approach proposed by
Rossikhin et al. [27] has been generalized for studying
the influence of the impact-induced three-to-one in-
ternal resonance on the low velocity impact response
of a nonlinear doubly curved shallow shell with rect-
angular platform. Such an additional nonlinear phe-
nomenon as the internal resonance could be examined
only via analytical treatment, since any of existing nu-
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merical procedures could not catch this subtle phe-
nomenon.

2 Problem Formulation and Govern-
ing Equations

Assume that an elastic or rigid sphere of mass M
moves along the z-axis towards a thin-walled doubly
curved shell with thickness h, curvilinear lengths a
and b, principle curvatures kx and ky and rectangular
base, as shown in Fig. 1. Impact occurs at the mo-
ment t = 0 with the velocity εV0 at the point N with
Cartesian coordinates x0, y0.

According to Donnell’s nonlinear shallow shell
theory, the equations of motion could be obtained in
terms of lateral deflectionw and Airy’s stress function
φ [28]

D
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whereD = Eh3

12(1−ν2)
is the cylindrical rigidity, ρ is the

density,E and ν are the elastic modulus and Poisson’s
ratio, respectively, t is time, F = P (t)δ(x−x0)δ(y−
y0) is the contact force, P (t) is yet unknown function,
δ is the Dirac delta function, x and y are Cartesian
coordinates, overdots denote time-derivatives, φ(x, y)
is the stress function which is the potential of the in-
plane force resultants

Nx = h
∂2φ

∂y2
, Ny = h

∂2φ

∂x2
, Nxy = −h ∂2φ

∂x∂y
.

(3)
The equation of motion of the sphere is written as

Mz̈ = −P (t) (4)

subjected to the initial conditions

z(0) = 0, ż(0) = εV0, (5)

where z(t) is the displacement of the sphere, in so
doing

z(t) = w(x0, y0, t). (6)

Figure 1: Geometry of the doubly curved shallow
shell

Considering a simply supported shell with mov-
able edges, the following conditions should be im-
posed at each edge:
at x = 0, a

w = 0,
∫ b

0
Nxydy = 0, Nx = 0, Mx = 0, (7)

and at y = 0, b

w = 0,
∫ a

0
Nxydx = 0, Ny = 0, My = 0, (8)

where Mx and My are the moment resultants.
The suitable trial function that satisfies the geo-

metric boundary conditions is

w(x, y, t) =
p̃∑
p=1

q̃∑
q=1

ξpq(t) sin
(pπx
a

)
sin
(qπy
b

)
,

(9)
where p and q are the number of half-waves in x and y
directions, respectively, and ξpq(t) are the generalized
coordinates. Moreover, p̃ and q̃ are integers indicating
the number of terms in the expansion.

Substituting (9) in (6) and using (4), we obtain

P (t)=−M
p̃∑
p=1

q̃∑
q=1

ξ̈pq(t) sin
(pπx0

a

)
sin
(qπy0

b

)
.

(10)
In order to find the solution of the set of equations

(1) and (2), it is necessary first to obtain the solution
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of Eq. (2). For this purpose, let us substitute (9) in the
right-hand side of Eq. (2) and seek the solution of the
equation obtained in the form

φ(x, y, t)=
m̃∑
m=1

ñ∑
n=1

Amn(t) sin
(mπx

a

)
sin
(nπy

b

)
,

(11)
where Amn(t) are yet unknown functions.

Substituting (9) and (11) in Eq. (2) and using the
orthogonality conditions of sines within the segments
0 ≤ x ≤ a and 0 ≤ y ≤ b, we have
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E
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4E
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(
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∑
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(2)
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B
(1)
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0
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a
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b

)
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(
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a

)
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(
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b

)
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a
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b
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B
(2)
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∫ a

0

∫ b

0
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a

)
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b

)
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(
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a
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(
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b

)
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a

)
sin
(nπy

b

)
dxdy,

Kmn =
(
ky
m2

a2
+ kx

n2

b2

)2(
m2

a2
+
n2

b2

)−2

.

Substituting then (9)–(12) in Eq. (1) and using the
orthogonality condition of sines within the segments
0 ≤ x ≤ a and 0 ≤ y ≤ b, we obtain an infinite set
of coupled nonlinear ordinary differential equations of
the second order in time for defining the generalized
coordinates

ξ̈mn(t) +Ω2
mnξmn(t) +

8π2E

a3b3ρ
(13)

×
∑
p

∑
q

∑
k

∑
l

Bpqklmn

(
Kkl−

1
2
Kmn

)

× ξpq(t)ξkl(t) +
32π4E

a6b6ρ

×
∑
r

∑
s

∑
i

∑
j

∑
k

∑
l

∑
p

∑
q

Brsijmn

× Bpqklijξrs(t)ξpq(t)ξkl(t)

+
4M
abρh
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a

)
sin
(nπy0

b

)
×
∑
p

∑
q

ξ̈pq(t) sin
(pπx0

a

)
sin
(qπy0

b

)
=0,

where Ωmn is the natural frequency of themnth mode
of the shell vibration defined as

Ω2
mn =

E

ρ

[
π4h2

12(1− ν2)

(
m2

a2
+
n2

b2

)2

+Kmn

]
.

The last term in each equation from (13) describes
the influence of the coupled impact interaction of the
target with the impactor of the mass M applied at the
point with the coordinates x0, y0.

It is known [29, 30] that during nonstationary ex-
citation of thin bodies not all possible modes of vi-
bration would be excited. Moreover, the modes which
are strongly coupled by any of the so-called internal
resonance conditions are initiated and dominate in the
process of vibration, in so doing the types of modes to
be excited are dependent on the character of the exter-
nal excitation.

Thus, in order to study the additional nonlinear
phenomenon induced by the coupled impact interac-
tion due to equation (13), we suppose that only two
natural modes of vibrations are excited during the pro-
cess of impact, namely, Ωαβ and Ωγδ. Then the set of
equations (13) is reduced to the following two nonlin-
ear differential equations:

p11ξ̈αβ+p12ξ̈γδ + Ω2
αβξαβ + p13ξ

2
αβ + p14ξ

2
γδ

+p15ξαβξγδ+p16ξ
3
αβ+p17ξαβξ

2
γδ=0, (14)

p21ξ̈αβ+p22ξ̈γδ + Ω2
γδξγδ + p23ξ

2
γδ + p24ξ

2
αβ

+p25ξαβξγδ+p26ξ
3
γδ+p27ξ

2
αβξγδ=0, (15)

where

p11 = 1 +
4M
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s2
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4M
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s2
2,
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4M
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a

)
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(
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)
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+ Bαβγδαβ

(
Kγδ −

1
2
Kαβ

)]
,

p23 =
8π2E

a3b3ρ
Bαβαβγδ

(
Kαβ −

1
2
Kγδ

)
,

p24 =
8π2E

a3b3ρ
Bγδγδγδ

1
2
Kγδ,

p25 =
8π2E

a3b3ρ

[
Bαβγδγδ

1
2
Kγδ

+ Bγδαβγδ

(
Kαβ −

1
2
Kγδ

)]
,

p16 =
32π2E

a3b3ρ

∑
i

∑
j

BαβijαβBαβαβij ,

p26 =
32π2E

a3b3ρ

∑
i

∑
j

BγδijγδBγδγδij ,

p17 =
32π2E

a3b3ρ

∑
i

∑
j

(BαβijαβBγδγδij

+ BγδijαβBαβγδij +BγδijαβBγδαβij) ,

p27 =
32π2E

a3b3ρ

∑
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∑
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3 Method of Solution

In order to solve a set of two nonlinear equations (14)
and (15), we apply the method of multiple time scales
[31] via the following expansions:

ξij(t, ε) = εX1
ij(T0, T2) + ε2X2

ij(T0, T2)

+ ε3X3
ij(T0, T2), (16)

where ij = αβ or γδ, and Tn = εnt are new in-
dependent variables, among them: T0 = t is a fast
scale characterizing motions with the natural frequen-
cies, and T2 = ε2t is a slow scale characterizing the
modulation of the amplitudes and phases of the modes
with nonlinearity. The dependence of ξij(t, ε) on T1 is
suppressed because secular terms appear at third order
and not at second order [31].

Considering that

d2

dt2
ξij = ε

(
D2

0X
1
ij

)
+ ε3

(
D2

0X
3
ij + 2D0D2X

1
ij

)
,

where Dn
i = ∂n/∂Tni (n = 1, 2, i = 0, 1), and sub-

stituting the proposed solution (16) in (14) and (15),

after equating the coefficients at like powers of ε to
zero, we are led to a set of recurrence equations to
various orders:
to order ε

p11D
2
0X

1
1 + p12D

2
0X

1
2 + Ω2

1X
1
1 = 0, (17)

p21D
2
0X

1
1 + p22D

2
0X

1
2 + Ω2

2X
1
2 = 0; (18)

to order ε2
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2
0X

2
1 + p12D

2
0X

2
2 + Ω2

1X
2
1 = −p13(X1

1 )2

− p14(X1
2 )2 − p15X

1
1X

1
2 , (19)
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2
0X

2
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2
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2
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2X
2
2 = −p23(X1

1 )2

− p24(X1
2 )2 − p25X

1
1X

1
2 , (20)

to order ε3
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2
0X

3
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2
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3
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3
1 = −2p11D0D2X

1
1
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1
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2
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2 − p15
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− p16
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, (21)
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2
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2

)3 − p27

(
X1

1

)2
X1

2 , (22)

where for simplicity is it denoted Ω1 = Ωαβ , Ω2 =
Ωγδ, X1

1 = X1
αβ , X1

2 = X1
γδ, X

3
1 = X3

αβ , and X3
2 =

X3
γδ.

3.1 Solution of Equations at Order of ε

Following Rossikhin et al. [27], we seek the solution
of (17) and (18) in the form:

X1
1 = A1 (T2) eiω1T0 +A2 (T2) eiω2T0 + cc, (23)

X1
2 = α1A1 (T2) eiω1T0 + α2A2 (T2) eiω2T0 + cc,

(24)
where A1(T2) and A2(T2) are unknown complex
functions, cc is the complex conjugate part to the pre-
ceding terms, and Ā1(T2) and Ā2(T2) are their com-
plex conjugates, ω1 and ω2 are unknown frequencies
of the coupled process of impact interaction of the im-
pactor and the target, and α1 and α2 are yet unknown
coefficients.

Substituting (23) and (24) in (17) and (18) and
gathering the terms with eiω1T0 and eiω2T0 yields(

Ω2
1 − p11ω

2
1 − p12α1ω

2
1

)
A1e

iω1T0 (25)

+
(
Ω2

1 − p11ω
2
2 − p12α2ω

2
2

)
A2e

iω2T0 +cc= 0,
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(
α1Ω2

2 − p21ω
2
1 − p22α1ω

2
1

)
A1e

iω1T0 (26)

+
(
α2Ω2

2− p21ω
2
2 − p22α2ω

2
2

)
A2e

iω2T0 +cc= 0.

In order to satisfy equations (25) and (26), it is a
need to vanish to zero each bracket in these equations.
As a result, from four different brackets we have

α1 = −p11ω
2
1 − Ω2

1

p12ω2
1

, (27)

α1 = − p21ω
2
1

p22ω2
1 − Ω2

2

, (28)

α2 = −p11ω
2
2 − Ω2

1

p12ω2
2

, (29)

α2 = − p21ω
2
2

p22ω2
2 − Ω2

2

. (30)

Since the left-hand side parts of relationships (27)
and (28), as well as (29) and (30) are equal, then their
right-hand side parts should be equal as well. Now
equating the corresponding right-hand side parts of
(27), (28) and (29), (30) we are led to one and the
same characteristic equation for determining the fre-
quencies ω1 and ω2:

(
Ω2

1 − p11ω
2
) (

Ω2
2 − p22ω

2
)
− p2

12ω
4 = 0, (31)

whence it follows that

ω2
1,2 =

(
p22Ω2

1 + p11Ω2
2

)
±
√

∆
2
(
p11p22 − p2

12

) , (32)

∆ =
(
p22Ω2

1 − p11Ω2
2

)2 + 4 Ω2
1Ω2

2p
2
12.

Reference to relationships (32) shows that as the
impactor mass M → 0, the frequencies ω1 and ω2

tend to the natural frequencies of the shell vibrations
Ω1 and Ω2, respectively. Coefficients s1 and s2 de-
pend on the numbers of the natural modes involved
in the process of impact interaction, αβ and γδ, and
on the coordinates of the contact force application
x0, y0, resulting in the fact that their particular combi-
nations could vanish coefficients s1 and s2 and, thus,
coefficients p12 = p21 = 0. Such cases should be
considered separately.

3.2 Solution of Equations at Order of ε2

Now substituting (23) and (24) in (19) and (20), we
obtain

p11D
2
0X

2
1 + p12D

2
0X

2
2 + Ω2

1X
2
1

= −(p13 + α2
1p14 + α1p15)A1

[
A1e

2iω1T0 + Ā1

]
−(p13 + α2

2p14 + α2p15)A2

[
A2e

2iω2T0 + Ā2

]
−2 [p13 + α1α2p14 + (α1 + α2)p15]A1

×
[
A2e

i(ω1+ω2)T0 + Ā2e
i(ω1−ω2)T0

]
+ cc,

(33)

p21D
2
0X

2
1 + p22D

2
0X

2
2 + Ω2

2X
2
2

= −(p23 + α2
1p24 + α1p25)A1

[
A1e

2iω1T0 + Ā1

]
−(p23 + α2

2p24 + α2p25)A2

[
A2e

2iω2T0 + Ā2

]
−2 [p23 + α1α2p24 + (α1 + α2)p25]A1

×
[
A2e

i(ω1+ω2)T0 + Ā2e
i(ω1−ω2)T0

]
+ cc.

(34)
Reference to equations (33) and (34) shows that

the two-to-one internal resonance ω1 = 2ω2 could
occur on this step, which has been studied in detail
in [32]. Thus, in further treatment we assume that
ω1 6= 2ω2.

Therefore to solve equations (33) and (34) let us
first apply the operators (p22D

2
0 + Ω2

2) and (−p12D
2
0)

to (33) and (34), respectively, and then add the result-
ing equations. This procedure will allow us to elim-
inate X2

2 . If we apply the operators (−p12D
2
0) and

(p11D
2
0 + Ω2

1) to (33) and (34), respectively, and then
add the resulting equations. This procedure will allow
us to eliminate X2

1 . Thus, we obtain

[
(p11p22−p2

12)D4
0 +(p11Ω2

2+p22Ω2
1)D2

0 +Ω2
1Ω2

2

]
×X2

1 = −
[
(p13 + α2

1p14 + α1p15)(p22D
2
0 + Ω2

2)

−(p23 + α2
1p24 + α1p25)p12D

2
0

]
×A1

[
A1e

2iω1T0 + Ā1

]
−
[
(p13 + α2

2p14 + α2p15)(p22D
2
0 + Ω2

2)

−(p23 + α2
2p24 + α2p25)p12D

2
0

]
×A2

[
A2e

2iω2T0 + Ā2

]
−2 {[p13 + α1α2p14 + (α1 + α2)p15]

×(p22D
2
0 + Ω2

2)

− [p23 + α1α2p24 + (α1 + α2)p25] p12D
2
0

}
×A1

[
A2e

i(ω1+ω2)T0 + Ā2e
i(ω1−ω2)T0

]
+ cc,

(35)

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Y. A. Rossikhin, M. V. Shitikova 

Muhammed Salih Khalid J. M.

E-ISSN: 2224-3429 122 Volume 10, 2015



[
(p11p22−p2

12)D4
0 +(p11Ω2

2+p22Ω2
1)D2

0 +Ω2
1Ω2

2

]
×X2

2 = −
[
(p23 + α2

1p24 + α1p25)(p11D
2
0 + Ω2

1)

−(p13 + α2
1p14 + α1p15)p12D

2
0

]
×A1

[
A1e

2iω1T0 + Ā1

]
−
[
(p23 + α2

2p24 + α2p25)(p11D
2
0 + Ω2

1)

−(p13 + α2
2p14 + α2p15)p12D

2
0

]
×A2

[
A2e

2iω2T0 + Ā2

]
−2 {[p23 + α1α2p24 + (α1 + α2)p25]

×(p11D
2
0 + Ω2

1)

− [p13 + α1α2p14 + (α1 + α2)p15] p12D
2
0

}
×A1

[
A2e

i(ω1+ω2)T0 + Ā2e
i(ω1−ω2)T0

]
+ cc.

(36)
The solution of (35) and (36) has the form

X2
1 = F1 (T2) eiω1T0 + F2 (T2) eiω2T0

+N1A
2
1e

2iω1T0 +N2A
2
2e

2iω2T0 +N3A1Ā1

+N4A2Ā2 +N5A1A2e
i(ω1+ω2)T0

+N6A1Ā2e
i(ω1−ω2)T0 + cc,

(37)

X2
2 = α1F1 (T2) eiω1T0 + α2F2 (T2) eiω2T0

+E1A
2
1e

2iω1T0 + E2A
2
2e

2iω2T0 + E3A1Ā1

+E4A2Ā2 + E5A1A2e
i(ω1+ω2)T0

+E6A1Ā2e
i(ω1−ω2)T0 + cc,

(38)

where F1(T2) and F2(T2) are unknown complex func-
tions, and coefficients Ni and Ei (i = 1, 2, ..., 6) are
presented in Appendix.

3.3 Solution of Equations at Order of ε3 at
Three-to-one Internal Resonance

Now substituting (23), (24), (37), and (38) in (21) and
(22), we obtain [33]

p11D
2
0X

3
1 + p12D

2
0X

3
2 + Ω2

1X
3
1

= − [2iω1(p11 + α1p12)D2A1

+K1A
2
1Ā1 +K2A1A2Ā2

]
eiω1T0

−
[
2iω2(p11 + α2p12)D2A2 + L1A

2
2Ā2

+L2A1Ā1A2

]
eiω2T0

−
{
M1A

3
2e

3iω2T0 +M2A1Ā
2
2e
i(ω1−2ω2)T0

}
+Reg + cc,

(39)

p21D
2
0X

3
1 + p22D

2
0X

3
2 + Ω2

2X
3
2

= − [2iω1(p21 + α1p22)D2A1

+K3A
2
1Ā1 +K4A1A2Ā2

]
eiω1T0

−
[
2iω2(p21 + α2p22)D2A2 + L3A

2
2Ā2

+L4A1Ā1A2

]
eiω2T0

−
{
M3A

3
2e

3iω2T0 +M4A1Ā
2
2e
i(ω1−2ω2)T0

}
+Reg + cc,

(40)
where all regular terms are designated by Reg, and
coefficients Ki, Li, and Mi (i = 1, 2, 3, 4) are given
in Appendix.

Reference to equations (39) and (40) shows that
the following three-to-one internal resonance could
occur:

ω1 = 3ω2. (41)

Internal Resonance ω1 = 3ω2. Suppose that ω1 ≈
3ω2. Then equations (39) and (40) could be rewritten
in the following form:

p11D
2
0X

3
1 + p12D

2
0X

3
2 + Ω2

1X
3
1 = B1 exp(iω1T0)

+B2 exp(iω2T0) + Reg + cc,
(42)

p21D
2
0X

3
1 + p22D

2
0X

3
2 + Ω2

2X
3
2 = B3 exp(iω1T0)

+B4 exp(iω2T0) + Reg + cc,
(43)

where

B1 = −2iω1(p11 + α1p12)D2A1 −K1A
2
1Ā1

−K2A1A2Ā2 −M1A
3
2, (44)

B2 = −2iω2(p11 + α2p12)D2A2 − L1A
2
2Ā2

−L2A1Ā1A2 −M2A1Ā
2
2, (45)

B3 = −2iω1(p21 + α1p22)D2A1 −K3A
2
1Ā1

−K4A1A2Ā2 −M3A
3
2, (46)

B4 = −2iω2(p21 + α2p22)D2A2 − L3A
2
2Ā2

−L4A1Ā1A2 −M4A1Ā
2
2. (47)

Let us show that the terms with the exponents
exp(±iωiT0) (i = 1, 2) produce circular terms in
equations (42) and (43). For this purpose we choose a
particular solution in the form

X2
1 p = C1 exp(iω1T0) + cc,

X2
2 p = C2 exp(iω1T0) + cc,

(48)

or
X2

1 p = C ′1 exp(iω2T0) + cc,
X2

2 p = C ′2 exp(iω2T0) + cc,
(49)
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where C1, C2 and C ′1, C ′2 are arbitrary constants.
Substituting the proposed solution in (42) and

(43) we are led to the following sets of equations, re-
spectively:p12ω

2
1 (α1C1 − C2) = B1,

p21ω
2
1

(
−C1 + 1

α1
C2

)
= B3,

(50)

or p12ω
2
2 (α2C

′
1 − C ′2) = B2,

p21ω
2
2

(
−C ′1 + 1

α2
C ′2

)
= B4.

(51)

From the sets of equations (50) and (51) it is ev-
ident that the determinants comprised from the coef-
ficients standing at C1, C2 and C ′1, C ′2 are equal to
zero, therefore, it is impossible to determine the ar-
bitrary constants C1, C2 and C ′1, C ′2 of the particular
solutions (48) and (49), what proves the above propo-
sition concerning the circular terms.

In order to eliminate the circular terms, the terms
proportional to eiω1T0 and eiω2T0 should be vanished
to zero putting Bi = 0 (i = 1, 2, 3, 4). So we obtain
four equations for defining two unknown amplitudes
A1(t) and A2(t). However, it is possible to show that
not all of these four equations are linear independent
from each other.

For this purpose, let us first apply the operators
(p22D

2
0 + Ω2

2) and (−p12D
2
0) to (42) and (43), re-

spectively, and then add the resulting equations. This
procedure will allow us to eliminate X3

2 . If we ap-
ply the operators (−p12D

2
0) and (p11D

2
0 +Ω2

1) to (42)
and (43), respectively, and then add the resulting equa-
tions. This procedure will allow us to eliminate X3

1 .
Thus, we obtain[

(p11p22−p2
12)D4

0 +(p11Ω2
2+p22Ω2

1)D2
0 +Ω2

1Ω2
2

]
X3

1

=
[
(p22D

2
0 + Ω2

2)B1 − p12D
2
0B3

]
exp(iω1T0)

+
[
(p22D

2
0 + Ω2

2)B2 − p12D
2
0B4

]
exp(iω2T0)

+ Reg + cc,
(52)[

(p11p22−p2
12)D4

0 +(p11Ω2
2+p22Ω2

1)D2
0 +Ω2

1Ω2
2

]
X3

2

=
[
−p12D

2
0B1 + (p11D

2
0 + Ω2

1)B3

]
exp(iω1T0)

+
[
−p12D

2
0B2 + (p11D

2
0 + Ω2

1)B4

]
exp(iω2T0)

+ Reg + cc.
(53)

To eliminate the circular terms from equations
(52) and (53), it is necessary to vanish to zero the
terms in each square bracket. As a result we obtain{

(Ω2
2 − p22ω

2
1)B1 + p12ω

2
1B3 = 0

p12ω
2
1B1 + (Ω2

1 − p11ω
2
1)B3 = 0

(54)

and {
(Ω2

2 − p22ω
2
2)B2 + p12ω

2
2B4 = 0

p12ω
2
2B2 + (Ω2

1 − p11ω
2
2)B4 = 0

(55)

From equations (54) and (55) it is evident that
the determinant of each set of equations is reduced to
the characteristic equation (31), whence it follows that
each pair of equations is linear dependent, therefore
for further treatment we should take only one equation
from each pair in order that these two chosen equa-
tions are to be linear independent. Thus, for example,
taking the first equations from each pair and consider-
ing relationships (28) and (30), we have

B1 + α1B3 = 0, (56)

B3 + α2B4 = 0. (57)

Substituting (44)-(47) in (56) and (57), we obtain
the following solvability equations:

2iω1D2A1+p1A
2
1Ā1+p2A1A2Ā2+p3A

3
2 = 0, (58)

2iω2D2A2 + p4A
2
2Ā2 + p5A1Ā1A2 + p6A1Ā

2
2 = 0,

(59)
where

p1 =
K1 + α1K3

k1
, p2 =

K2 + α1K4

k1
,

p3 =
M1 + α1M3

k1
, p4 =

L1 + α2L3

k2
,

p5 =
L2 + α2L4

k2
, p6 =

M2 + α2M4

k2
,

k1 =
Ω2

1 + α1Ω2
2

ω2
1

, k2 =
Ω2

1 + α2Ω2
2

ω2
2

.

Let us multiply equations (58) and (59) by Ā1

and Ā2, respectively, and find their complex conju-
gates. After adding every pair of the mutually adjoint
equations with each other and subtracting one from
another, as a result we obtain

2iω1

(
Ā1D2A1 −A1D2Ā1

)
+ 2p1A

2
1Ā

2
1

+2p2A1Ā1A2Ā2 + p3

(
Ā1A

3
2 +A1Ā

3
2

)
= 0, (60)

2iω1

(
Ā1D2A1+A1D2Ā1

)
+p3

(
Ā1A

3
2−A1Ā

3
2

)
=0,
(61)

2iω2

(
Ā2D2A2 −A2D2Ā2

)
+ 2p4A

2
2Ā

2
2

+2p5A1Ā1A2Ā2 + p6

(
A1Ā

3
2 + Ā1A

3
2

)
= 0, (62)

2iω2

(
Ā2D2A2+A2D2Ā2

)
+p6

(
A1Ā

3
2−Ā1A

3
2

)
=0.
(63)
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Representing A1(T2) and A2(T2) in equations
(60)–(63) in the polar form

Ai(T2) = ai(T2)eiϕi(T2) (i = 1, 2), (64)

we are led to the system of four nonlinear differential
equations in a1(T2), a2(T2), ϕ1(T2), and ϕ2(T2)

(a2
1). = − p3

ω1
a1a

3
2 sin δ, (65)

2ϕ̇1 −
p1

ω1
a2

1 −
p2

ω1
a2

2 −
p3

ω1
a−1

1 a3
2 cos δ = 0, (66)

(a2
2). =

p6

ω2
a1a

3
2 sin δ, (67)

2ϕ̇2 −
p5

ω2
a2

1 −
p4

ω2
a2

2 −
p6

ω2
a1a2 cos δ = 0, (68)

where δ = 3ϕ2−ϕ1, and a dot denotes differentiation
with respect to T2.

From equations (65) and (67) we could find that

p6

ω2
(a2

1). +
p3

ω1
(a2

2). = 0 (69)

Multiplying equation (69) by MV0 and integrat-
ing over T2, we obtain the first integral of the set of
equations (65)–(68), which is the law of conservation
of energy,

MV0

(
p6

ω2
a2

1 +
p3

ω1
a2

2

)
= T0, (70)

where T0 is the initial energy.
Considering that T0 = 1

2 MV 2
0 , equation (70) is

reduced to the following form:

p6

ω2
a2

1 +
p3

ω1
a2

2 =
V0

2
. (71)

Let us introduce into consideration a new function
ξ(T2) in the following form:

a2
1 =

ω2

p6

V0

2
ξ(T2), a2

2 =
ω1

p3

V0

2
[1− ξ(T2)] .

(72)
It is easy to verify by the direct substitution that

formulas (72) satisfy equation (71), while the value
ξ(0) (0 ≤ ξ(0) ≤ 1) governs the energy distribution
between two subsystems, X1

1 and X1
2 , at the moment

of impact.
Substituting (72) in (65) yields

ξ̇ = −b V0

2
(1− ξ)

√
ξ(1− ξ) sin δ, (73)

where

b =
√
ω1p6

ω2p3
.

Subtracting equation (66) from the triple equation
(68), we have

δ̇ = b
V0

2

(
3
2
ξ − 1

2
(1− ξ)

)√
1− ξ
ξ

cos δ

+
V0

2

(
3p5

2ω2
− p1

2ω1

)
ω2

p6
ξ

+
V0

2

(
3p4

2ω2
− p2

2ω1

)
ω1

p3
(1− ξ). (74)

Equation (74) could be rewritten in another form
considering that

δ̇ =
dδ

dξ
ξ̇,

or with due account for (73)

δ̇ = −b V0

2
(1− ξ)

√
ξ(1− ξ) dδ

dξ
sin δ. (75)

Substituting (75) in equation (74) yields

d cos δ
dξ

+
1− 4ξ

2ξ(1− ξ)
cos δ − Γ1√

ξ(1− ξ)

− Γ2

1− ξ

√
ξ

1− ξ
= 0, (76)

where

Γ1 =
1
b

(
3p4

2ω2
− p2

2ω1

)
ω1

p3
,

Γ2 =
1
b

(
3p5

2ω2
− p1

2ω1

)
ω2

p6
.

Integrating (76), we have

cos δ =
G0

(1− ξ)
√
ξ(1− ξ)

− Γ1

2

√
1− ξ
ξ

+
Γ2

2
ξ

1− ξ

√
ξ

1− ξ
, (77)

whereG0 is a constant of integration to be determined
from the initial conditions.

Based on relationship (77), it is possible to intro-
duce into consideration the stream function G(δ, ξ) of
the phase fluid on the plane δξ such that

G(δ, ξ) = (1− ξ)
√
ξ(1− ξ) cos δ +

Γ1

2
(1− ξ)2

−Γ2

2
ξ2 = G0, (78)

which is one more first integral of the set of equations
(65)–(68).
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It is easy to verify that the function (78) is really
a stream function, since

vδ = δ̇ = −b V0

2
∂G

∂ξ
, vξ = ξ̇ = b

V0

2
∂G

∂δ
. (79)

In order to find the T2-dependence of ξ, it is nec-
essary to express sin δ in terms of ξ in equation (73)
with a help of relationship (77). As a result we obtain

ξ̇ = −b V0

2

√
ξ(1− ξ)3−

[
G0−

Γ1

2
(1− ξ)2+

Γ2

2
ξ2

]2

or∫ ξ

ξ0

dξ√
ξ(1− ξ)3−

[
G0 − Γ1

2 (1− ξ)2 + Γ2
2 ξ2

]2
= −b V0

2
T2, (80)

where ξ0 is the initial magnitude of the function ξ =
ξ(T2).

In other words, the calculation of the T2-
dependence of ξ is reduced to the calculation of the in-
complete elliptic integral in the left hand-side of (80).

3.4 Phase portraits

The qualitative analysis of the case of the three-to-one
internal resonance (41) could be carried out with the
help of the stream-function G(ξ, δ) defined by rela-
tionship (78). The phase portrait to be constructed ac-
cording to (78) depends essentially on the magnitudes
of the coefficients Γ1 and Γ2. Let us carry out the
phenomenological analysis of the phase portraits con-
structing them at different magnitudes of the system
parameters.

3.4.1 The case when Γ1 = Γ2 = 0

Let us first consider the case when Γ1 = Γ2 = 0.
Then (78) is reduced to

G(δ, ξ) = (1− ξ)
√
ξ(1− ξ) cos δ = G0, (81)

and the stream-lines of the phase fluid in the phase
plane ξ − δ for this particular case are presented in
Figure 2. Magnitudes ofG are indicated by digits near
the curves which correspond to the stream-lines; the
flow direction of the phase fluid elements are shown
by arrows on the stream-lines.

Reference to Figure 2 shows that the phase fluid
flows within the circulation zones, which tend to be lo-
cated around the perimeter of the rectangles bounded
by the lines ξ = 0, ξ = 1, and δ = ±(π/2) ± 2πn

(n = 0, 1, 2, ...). As this takes place, the flow in each
such rectangle becomes isolated. On all four rectan-
gle sides G = 0 and inside it the value G preserves its
sign. The function G attains its extreme magnitudes
at the points with the coordinates ξ = 1

4 , δ = ±πn
(n = 0, 1, 2, ...).

Along the lines δ = ±(π/2) ± 2πn (n =
0, 1, 2, ...) the solution could be written as

ξ =
[
1 +

1
[c0 + f(T2)]2

]−1

,

δ(T2) = δ0 =
π

2
± πn, n = 0, 1, 2, ...

where

f(T2) = −bV0

2
T2, c0 =

√
ξ0

1− ξ0
.

Along the line ξ = 1 the stationary boundary
regime is realized, because when ξ = ξ0 = 1 the am-
plitudes a1 = const and a2 = 0, and from (73) and
(75) it follows that ξ̇ = δ̇ = 0.

The transition of fluid elements from the points
ξ = 0, δ = π/2 ± 2πn to the points ξ = 0, δ =
−π/2 ± 2πn (n = 0, 1, 2...) proceeds instantly, be-
cause according to the distribution of the phase veloc-
ity along the section δ = 0 (see Figure 2) the magni-
tude of v tends to infinity as ξ → 0. The distribution
of the velocity along the vertical lines δ = ±πn has
the aperiodic character, while in the vicinity of the line
ξ = 1/4 it possesses the periodic character.

3.4.2 The case when Γ1 = 0 and Γ2/2 = 1

In this case, the stream-function is defined as

G(ξ, δ) = ξ1/2(1−ξ)3/2 cos δ+(1−ξ)2 = G(ξ0, δ0),

and Figure 3 shows the streamlines of the phase fluid
in the phase plane.

As in the previous case, the phase fluid flows in
an infinitely long channel, the boundaries of which are
the straight lines ξ = 0 and ξ = 1, corresponding to
the phase modulated motions. In one part the stream-
lines are non-closed, what corresponds to the peri-
odic change of amplitudes and the aperiodic change
of phases; in another part they are closed, what corre-
sponds to the periodic change of both amplitudes and
phases. The aperiodic regime lines are the boundaries
of the closed and unclosed streamline areas. From the
phase portrait in Figure 3 it is seen that the circulation
zones are located in a staggered arrangement by the
right and left channel sides (this configuration resem-
bles that of von Kármán staggered vortex tracks).
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Figure 2: Phase portrait for the case of 1:3 internal resonance at Γ1 = Γ2 = 0

Each zone by the side ξ = 1 is surrounded by a
line with the value G = 0. This line consists of two
parts connected with each other at the branch points
with the coordinates ξ = 1, δ = π/2 ± πn (n =
0, 1, 2...). One branch of this line corresponds to the
phase-modulated regime ξ = 1, and the other to the
aperiodic regime, wherein ξ varies from ξmin = 0.5 to
ξmax = 1. At the branch point itself, the phase fluid
flow velocity is equal to zero. Along the separatrix,
the analytic solution can be constructed in the follow-
ing form:

2
√

2
1− ξ

√
(1− ξ)(2− ξ)

∣∣∣ξ
ξ0

= −bV0

2
T2,

cos δ = −

√
1− ξ
ξ

.

The circulation zones by the side ξ = 0 are sur-
rounded by the line with the value G = 1. However,
only those parts of the line G = 1 which bound these
zones from above and come closer to the side ξ = 0
at the points ξ = 0, δ = π/2 ± πn belong to the do-
main of the fluid flow. The transition of fluid elements
from the points ξ = 0, δ = (π/2) ± πn to the points
ξ = 0, δ = (3π/2)± πn proceeds instantly. The line
G = 1 conforms to the periodic change of the am-
plitudes and the aperiodic change of the phase. The

separatrix G = 1 is defined by the following equa-
tions: ∫ ξ

ξ0

dξ√
ξ(1− 7ξ + 7ξ2 − 2ξ3)

=
∫ ξ

ξ0

dξ√
ξ(0.170515− ξ)(2ξ2 − 6.659ξ + 5.865)

= −bV0

2
T2,

cos δ =
2− ξ
1− ξ

√
ξ

1− ξ
,

wherein ξ varies from ξmin = 0 to ξmax = 0.170515.
Inside the both circulation zones there are points

with the extreme values of the stream-function: max-
imal Gmax = 1.11 and minimal Gmin = −0.0475,
respectively. These points are the centers correspond-
ing to the stable stationary regimes ξ = ξ0 = 0.0443,
δ = δ0 = ±2πn and ξ = ξ0 = 0.7057, δ = δ0 =
π ± 2πn, respectively.

Between the lines corresponding to G = 0 and
G = 1, unclosed streamlines are located which are in
accordance with the periodic change of the amplitudes
and the aperiodic change of the phase difference.
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Figure 3: Phase portrait for the case of 1:3 internal
resonance at Γ1 = 0, and Γ2/2 = 1

3.4.3 The case when Γ1/2 = Γ2/2 = 1

In this case, the stream-function is defined as

G(ξ, δ)=ξ1/2(1−ξ)3/2 cos δ−ξ2+(1−ξ)2=G(ξ0, δ0),

and Figure 4 shows the streamlines of the phase fluid
in the phase plane.

From Figure 4 it is seen that, unlike the previ-
ous case presented in Figure 4, the circulation zones
by the side ξ = 1 and the aperiodic regime dis-
appear. If ξ → 1, then the streamlines level off
and tend to the line ξ = 1 where G = −1. If
ξ → 0, then the streamlines tend to the piecewise
continuous line G = 1 determined on the segments
[−(π/2)±2πn, (π/2)±2πn]. The transition of fluid
elements from the points ξ = 0, δ = (π/2) ± 2πn
to the points ξ = 0, δ = (3π/2) ± 2πn proceeds
instantly. The line G = 1 conforms to the periodic
change of the amplitudes and the aperiodic change of
the phase difference. The separatrix G = 1 is defined
by the following equations:∫ ξ

ξ0

dξ√
ξ(1− 7ξ + 3ξ2 − ξ3)

=
∫ ξ

ξ0

dξ√
ξ(0.1523− ξ)(ξ2 − 2.8477ξ + 6.5663)

= −bV0

2
T2,

Figure 4: Phase portrait for the case of 1:3 internal
resonance at Γ1/2 = Γ2/2 = 1

cos δ =
2

1− ξ

√
ξ

1− ξ
,

wherein ξ varies from ξmin = 0 to ξmax = 0.1523.
Inside each circulation zone there is a point with

the maximal value of the stream-function Gmax =
1.108. These points are the centers corresponding
to the stable stationary regimes ξ = ξ0 = 0.04,
δ = δ0 = ±2πn.

Between the lines corresponding to G = −1 and
G = 1, unclosed streamlines are located which are in
accordance with the periodic change of the amplitudes
and the aperiodic change of the phase difference.

3.4.4 The case when Γ1 = −21.84 and = Γ2 =
0.01

In this case, the stream-function is defined as

G(ξ, δ) = ξ1/2(1− ξ)3/2 cos δ − 0.005ξ2

−10.92(1− ξ)2 = G(ξ0, δ0),

and Figure 5 shows the streamlines of the phase fluid
in the phase plane.

Figure 5 illustrates the phase portrait with only
unclosed phase fluid streamlines along which the fluid
flows in the direction of an increase in δ. With ξ → 0
and ξ → 1, the streamlines level off and tend, respec-
tively, to the lines ξ = 0 with G = Gmin = Γ1/2 =
−10.92 and ξ = 1 with G = Gmax = −Γ2/2 =
−0.005.
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Figure 5: Phase portrait for the case of 1:3 internal
resonance at Γ1 = −21.84 and Γ2 = 0.01

3.5 Initial conditions

In order to construct the final solution of the problem
under consideration, i.e. to solve the set of Eqs. (65)-
(68) involving the functions a1(T2), a2(T2), or ξ(T2),
as well as ϕ1(T2), and ϕ2(T2), or δ(T2), it is neces-
sary to use the initial conditions

w(x, y, 0) = 0, (82)

ẇ(x0, y0, 0) = εV0, (83)

p6

ω2
a2

1(0) +
p3

ω1
a2

2(0) =
V0

2
. (84)

The two-term relationship for the displacement w
(9) within an accuracy of ε according to (16) has the
form

w(x, y, t) = ε
[
X1
αβ(T0, T2) sin

(
απx
a

)
sin
(
βπy
b

)
+X1

γδ(T0, T2) sin
(γπx

a

)
sin
(
δπy
b

)]
+O(ε3).

(85)
Substituting (23) and (24) in (85) with due ac-

count for (64) yields

w(x, y, t) = 2ε
{
a1(ε2t) cos

[
ω1t+ ϕ1(ε2t)

]
+a2(ε2t)cos

[
ω2t+ ϕ2(ε2t)

]}
sin
(
απx
a

)
sin
(
βπy
b

)
+2ε

{
α1a1(ε2t) cos

[
ω1t+ ϕ1(ε2t)

]
+ α2a2(ε2t)

× cos
[
ω2t+ ϕ2(ε2t)

]}
sin
(γπx

a

)
sin
(
δπy
b

)
+O(ε3).

(86)
Differentiating (86) with respect to time t and

limiting ourselves by the terms of the order of ε, we
could find the velocity of the shell at the point of im-

pact as follows

ẇ(x0, y0, t)= −2ε
{
ω1(s1 + α1s2)a1(ε2t)

×sin
[
ω1t+ ϕ1(ε2t)

]
+ ω2(s1 + α2s2)

×a2(ε2t) sin
[
ω2t+ ϕ2(ε2t)

]}
+O(ε3).

(87)

Substituting (86) in the first initial condition (82)
and assuming that a1(0) > 0 and a2(0) > 0, we have

cosϕ1(0) = 0, cosϕ2(0) = 0, (88)

whence it follows that

ϕ1(0) = ±π
2
, ϕ2(0) = ±π

2
, (89)

and

cos δ0 = cos [3ϕ2(0)− ϕ1(0)] = ∓1, (90)

i.e.,
δ0 = ±π(n+ 1) (n = 0, 1, 2, ...). (91)

The signs in (89) should be chosen considering
the fact that the initial amplitudes are positive values,
i.e. a1(0) > 0 and a2(0) > 0. Assume for definite-
ness that

ϕ1(0) = −π
2
, ϕ2(0) = −π

2
. (92)

Substituting now (87) in the second initial condi-
tion (83) with due account for (92), we obtain

ω1(s1+α1s2)a1(0)+ω2(s1+α2s2)a2(0) =
V0

2
. (93)

From equations (84) and (93) we could determine
the initial amplitudes

a2(0)=
V0

2ω2(s1+α2s2)
− ω1(s1+α1s2)
ω2(s1+α2s2)

a1(0),

(94)
d1a

2
1(0) + d2a1(0) + d3 = 0, (95)

where

d1 = 1 +
ω2

1(s1 + α1s2)2

b2ω2
2(s1 + α2s2)2

,

d2 = − V0ω1(s1 + α1s2)
b2k1ω2

2(s1 + α2s2)2
,

d3 =
V 2

0

4b2ω2
2(s1 + α2s2)2

− V0ω2

2p6
.

It should be noted that the initial amplitudes de-
pend not only on the initial velocity of the impactor,
but according to (94) and (95) they are defined also by
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the parameters of two impact-induced modes coupled
by the three-to-one internal resonance (41).

Considering (90), from (78) we find the value of
constantG0, which defines the trajectory of a point on
the phase plane

G0 =
4
V 2

0

[
± p3

ω1

√
p3p6

ω1ω2
a1(0)a3

2(0)

+
Γ1p

2
3

2ω2
1

a4
2(0)− Γ2p

2
6

2ω2
2

a4
1(0)

]
. (96)

Thus, we have determined all necessary constants
from the initial conditions, therefore we could pro-
ceed to the construction of the solution for the contact
force.

3.6 The contact force

Now knowing a1(0), a2(0), ϕ1(0), and ϕ2(0), it is
possible to calculate the value P (t), which within an
accuracy of ε has the form:

P (t)=−εM
[
Ẍ1

1 (t)s1 + Ẍ1
2 (t)s2

]
+O(ε3), (97)

or with due account for (87)

P (t) = 2εM
{
ω2

1a1(ε2t) cos
[
ω1t+ ϕ1(ε2t)

]
+ω2

2a2(ε2t) cos
[
ω2t+ ϕ2(ε2t)

]}
s1

+2εM
{
α1ω

2
1a1(ε2t) cos

[
ω1t+ ϕ1(ε2t)

]
+α2ω

2
2a2(ε2t) cos

[
ω2t+ ϕ2(ε2t)

]}
s2 +O(ε3).

(98)
Considering (92) and (41), Eq. (98) is reduced to

P (t) = 2εMω2
2[9a1(0)(s1 + α1s2) sin 3ω2t

+ a2(0)(s1 + α2s2) sinω2t]
= 18Mε(s1 + α1s2)ω2

2a1(0) sinω2t

×
(

3−4 sin2 ω2t+
1
9

æ
)

+O(ε3), (99)

where the dimensionless coefficient æ

æ =
a2(0)(s1 + α2s2)
a1(0)(s1 + α1s2)

is defined by the parameters of two impact-induced
modes coupled by the three-to-one internal resonance
(41), as well as by the coordinates of the point of im-
pact and the initial velocity of impact.

The contact force in the dimensionless form could
be written as

P ∗(t) =
(

3− 4 sin2 τ +
1
9

æ
)

sin τ, (100)

Figure 6: Dimensionless time dependence of the di-
mensionless contact force

where

P ∗(t) =
P (t)

18εMω2
2(s1 + α1s2)a1(0)

.

The dimensionless time τ = ω2t dependence of
the dimensionless contact force P ∗ defined by (100)
is shown in Figure 6 for the different magnitudes of
the parameter æ: 0, 3, 6, and 9. Reference to Figure
6 shows that the increase in the parameter æ results in
the increase of both the maximal contact force and the
duration of contact. In other words, from Figure 6 it
is evident that the peak contact force and the duration
of contact depend essentially upon the parameters of
two impact-induced modes coupled by the three-to-
one internal resonance (41).

4 Conclusion

In the present paper, a new approach has been pro-
posed for the analysis of the impact interactions of
nonlinear doubly curved shallow shells with rectan-
gular base under the low-velocity impact by an elastic
sphere. It has been assumed that the shell is simply
supported and partial differential equations have been
obtained in terms of shell’s transverse displacement
and Airy’s stress function. The equations of motion
have been reduced to a set of infinite nonlinear ordi-
nary differential equations of the second order in time
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and with cubic and quadratic nonlinearities in terms
of the generalized displacements.

The approach utilized in the present paper is
based on the fact that during impact only two modes
strongly coupled by the three-to-one internal reso-
nance condition are initiated. Such an approach dif-
fers from the Galerkin method, wherein resonance
phenomena are not involved. Since is it assumed that
shell’s displacements are finite, then the local bearing
of the shell and impactor’s materials is neglected with
respect to the shell deflection in the contact region.
In other words, the Hertz’s theory, which is tradition-
ally in hand for solving impact problems, is not used
in the present study; instead, the method of multiple
time scales is adopted, which is used with much suc-
cess for investigating vibrations of nonlinear systems
subjected to the conditions of the internal resonance,
as well as to find the time dependence of the contact
force.

It has been shown that the time dependence of the
contact force depends essentially on the position of
the point of impact and the parameters of two impact-
induced modes coupled by the three-to-one internal
resonance. Besides, the contact force depends essen-
tially on the magnitude of the initial energy of the
impactor. This value governs the place on the phase
plane, where a mechanical system locates at the mo-
ment of impact, and the phase trajectory, along which
it moves during the process of impact.

The procedure suggested in the present paper
could be generalized for the analysis of impact re-
sponse of plates and shells when their motions are
described by three or five nonlinear differential equa-
tions.
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Appendix

N1 = −
[
(p13 + α2

1p14 + α1p15)(Ω2
2 − 4ω2

1p22)

+ (p23 + α2
1p24 + α1p25)4ω2

1p12

]
×
[
16ω4

1(p11p22 − p2
12)− 4ω2

1(p11Ω2
2 + p22Ω2

1)

+ Ω2
1Ω2

2

]−1
,

(101)
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N2 = −
[
(p13 + α2

2p14 + α2p15)(Ω2
2 − 4ω2

2p22)

+ (p23 + α2
2p24 + α2p25)4ω2

2p12

]
×
[
16ω4

2(p11p22 − p2
12)− 4ω2

2(p11Ω2
2 + p22Ω2

1)

+ Ω2
1Ω2

2

]−1
,

(102)

N3 = −p13 + α2
1p14 + α1p15

Ω2
1

, (103)

N4 = −p13 + α2
2p14 + α2p15

Ω2
1

, (104)

N5 = −2 {[p13 + α1α2p14 + (α1 + α2)p15]

×
[
Ω2

2 − p22(ω1 + ω2)2
]

+ p12(ω1 + ω2)2

× [p23 + α1α2p24 + (α1 + α2)p25]}
×
[
(ω1 + ω2)4(p11p22 − p2

12)− (ω1 + ω2)2

×(p11Ω2
2 + p22Ω2

1) + Ω2
1Ω2

2

]−1
,

(105)
N6 = −2 {[p13 + α1α2p14 + (α1 + α2)p15]

×
[
Ω2

2 − p22(ω1 − ω2)2
]

+ p12(ω1 − ω2)2

× [p23 + α1α2p24 + (α1 + α2)p25]}
×
[
(ω1 − ω2)4(p11p22 − p2

12)− (ω1 − ω2)2

×(p11Ω2
2 + p22Ω2

1) + Ω2
1Ω2

2

]−1
,

(106)
E1 = −

[
(p23 + α2

1p24 + α1p25)(Ω2
1 − 4ω2

1p11)

+ (p13 + α2
2p14 + α2p15)4ω2

1p12

]
×
[
16ω4

1(p11p22 − p2
12)− 4ω2

1(p11Ω2
2 + p22Ω2

1)

+ Ω2
1Ω2

2

]−1
,

(107)
E2 = −

[
(p23 + α2

1p24 + α1p25)(Ω2
1 − 4ω2

2p11)

+ (p13 + α2
2p14 + α2p15)4ω2

2p12

]
×
[
16ω4

2(p11p22 − p2
12)− 4ω2

2(p11Ω2
2 + p22Ω2

1)

+ Ω2
1Ω2

2

]−1
,

(108)

E3 = −p23 + α2
1p24 + α1p25

Ω2
2

, (109)

E4 = −p23 + α2
2p24 + α2p25

Ω2
2

, (110)

E5 = −2 {[p23 + α1α2p24 + (α1 + α2)p25]

×
[
Ω2

1 − p11(ω1 + ω2)2
]

+ p12(ω1 + ω2)2

× [p13 + α1α2p14 + (α1 + α2)p15]}
×
[
(ω1 + ω2)4(p11p22 − p2

12)− (ω1 + ω2)2

×(p11Ω2
2 + p22Ω2

1) + Ω2
1Ω2

2

]−1
,

(111)

E6 = −2 {[p23 + α1α2p24 + (α1 + α2)p25]

×
[
Ω2

1 − p11(ω1 − ω2)2
]

+ p12(ω1 − ω2)2

× [p13 + α1α2p14 + (α1 + α2)p15]}
×
[
(ω1 − ω2)4(p11p22 − p2

12)− (ω1 − ω2)2

×(p11Ω2
2 + p22Ω2

1) + Ω2
1Ω2

2

]−1
.

(112)
K1 = 3

(
p16 + α2

1p17

)
+(2p13 + α1p15)(D1 + 2D3)

+(2α1p14 + p15)(E1 + 2E3),
(113)

K2 = 6p16 + 2α2 (2α1 + α2) p17

+(2p13 + α1p15)2D4

+(2p13 + α2p15)(D5 +D6)
+(2α1p14 + p15)2E4

+(2α2p14 + p15)(E5 + E6),

(114)

K3 = 3α1

(
α2

1p26 + p27

)
+(2α1p23 + p25)(E1 + 2E3)
+(2p24 + α1p25)(D1 + 2D3),

(115)

K4 = 6α1α
2
2p26 + 2p27(α1 + 2α2)

+(2p24 + α1p25)2D4

+(2p24 + α2p25)(D5 +D6)
+(2α1p23 + p25)2E4

+(2α2p23 + p25)(E5 + E6),

(116)

L1 = 3
(
p16 + α2

2p17

)
+(2p13 + α2p15)(D2 + 2D4)
+(2α2p14 + p15)(E2 + 2E4),

(117)

L2 = 6p16 + 2α1 (α1 + 2α2) p17

+(2p13 + α2p15)2D3

+(2p13 + α1p15)(D5 +D6)
+(2α2p14 + p15)2E3

+(2α1p14 + p15)(E5 + E6),

(118)

L3 = 3α2

(
α2

2p26 + p27

)
+(2p24 + α2p25)(D2 + 2D4)
+(2α2p23 + p25)(E2 + 2E4),

(119)

L4 = 6α2
1α2p26 + 2p27(2α1 + α2)

+(2p24 + α2p25)2D3

+(2p24 + α1p25)(D5 +D6)
+(2α2p23 + p25)2E3

+(2α1p23 + p25)(E5 + E6),

(120)

M1 = p16 + α2
2p17 + (2p13 + α2p15)D2

+(2α2p14 + p15)E2,
(121)
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M2 = 3p16 + α2 (2α1 + α2) p17

+(2p13 + α1p15)D2 + (2α1p14 + p15)E2

+(2p13 + α2p15)D6 + (2α2p14 + p15)E6,
(122)

M3 = α2

(
α2

2p26 + p27

)
+ (2p24 + α2p25)D2

+(2α2p23 + p25)E2,
(123)

M4 = 3α1α
2
2p26 + p27(α1 + 2α2)

+(2p24 + α1p25)D2 + (2α1p23 + p25)E2

+(2p24 + α2p25)D6 + (2α2p23 + p25)E6.
(124)
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